Hawley RS: Exchange and chromosomal segregation in eukaryotes. In: Genetic Recombination. Edited by: Kucherlapati R, Smith GR. 1988, American Society for Microbiology, 497-527.
Google Scholar
Grell R: Distributive pairing. In: The Genetics and Biology of Drosophila. Edited by: Ashburner M, Novitski E. 1976, Academic Press, 435-486.
Google Scholar
Carpenter AT: Distributive segregation: motors in the polar wind?. Cell. 1991, 64: 885-890.
Article
CAS
PubMed
Google Scholar
Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K, et al: There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992, 13: 440-467.
Article
CAS
PubMed
Google Scholar
Dernburg AF, Sedat JW, Hawley RS: Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996, 86: 135-146.
Article
CAS
PubMed
Google Scholar
Karpen GH, Le MH, Le H: Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science. 1996, 273: 118-122.
Article
CAS
PubMed
Google Scholar
Koehler KE, Hassold TJ: Human aneuploidy: lessons from achiasmate segregation in Drosophila melanogaster. Ann Hum Genet. 1998, 62: 467-479. 10.1046/j.1469-1809.1998.6260467.x.
Article
CAS
PubMed
Google Scholar
Carpenter AT: A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973, 73: 393-428.
PubMed Central
CAS
PubMed
Google Scholar
Dawson DS, Murray AW, Szostak JW: An alternative pathway for meiotic chromosome segregation in yeast. Science. 1986, 234: 713-717.
Article
CAS
PubMed
Google Scholar
Molnar M, Bahler J, Kohli J, Hiraoka Y: Live observation of fission yeast meiosis in recombination-deficient mutants: a study on achiasmate chromosome segregation. J Cell Sci. 2001, 114: 2843-2853.
CAS
PubMed
Google Scholar
Keeney S: Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol. 2001, 52: 1-53.
Article
CAS
PubMed
Google Scholar
Cao L, Alani E, Kleckner N: A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990, 61: 1089-1101.
Article
CAS
PubMed
Google Scholar
Sun H, Treco D, Szostak JW: Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991, 64: 1155-1161.
Article
CAS
PubMed
Google Scholar
Cervantes MD, Farah JA, Smith GR: Meiotic DNA breaks associated with recombination in S. pombe. Mol Cell. 2000, 5: 883-888. 10.1016/S1097-2765(00)80328-7.
Article
CAS
PubMed
Google Scholar
Zenvirth D, Simchen G: Meiotic double-strand breaks in Schizosaccharomyces pombe. Curr Genet. 2000, 38: 33-38. 10.1007/s002940000126.
Article
CAS
PubMed
Google Scholar
Bergerat A, Gadelle D, Forterre P: Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem. 1994, 269: 27663-27669.
CAS
PubMed
Google Scholar
Bergerat A, de Massy B, Gadelle D, Varoutas P-C, Nicolas A, Forterre P: An atypical topoisomerase II from archaea with implication for meiotic recombination. Nature. 1997, 386: 414-417. 10.1038/386414a0.
Article
CAS
PubMed
Google Scholar
de Massy B, Rocco V, Nicolas A: The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 1995, 14: 4589-4598.
PubMed Central
CAS
PubMed
Google Scholar
Keeney S, Kleckner N: Covalent protein-DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA. 1995, 92: 11274-11278.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu J, Wu TC, Lichten M: The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 1995, 14: 4599-4608.
PubMed Central
CAS
PubMed
Google Scholar
Keeney S, Giroux CN, Kleckner N: Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997, 88: 375-384.
Article
CAS
PubMed
Google Scholar
Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM: Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998, 94: 387-398.
Article
CAS
PubMed
Google Scholar
McKim KS, Hayashi-Hagihara A: mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 1998, 12: 2932-2942.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baudat F, Manova K, Yuen JP, Jasin M, Keeney S: Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell. 2000, 6: 989-998.
Article
CAS
PubMed
Google Scholar
Romanienko PJ, Camerini-Otero RD: The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell. 2000, 6: 975-987.
Article
CAS
PubMed
Google Scholar
McKim KS, Green-Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, Hawley RS: Meiotic synapsis in the absence of recombination. Science. 1998, 279: 876-878. 10.1126/science.279.5352.876.
Article
CAS
PubMed
Google Scholar
Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME: Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J. 2000, 19: 2739-2750. 10.1093/emboj/19.11.2739.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grelon M, Vezon D, Gendrot G, Pelletier G: AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 2001, 20: 589-600. 10.1093/emboj/20.3.589.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N: Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev. 2000, 14: 493-503.
PubMed Central
CAS
PubMed
Google Scholar
Lin Y, Smith GR: Transient, meiosis-induced expression of the rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics. 1994, 136: 769-779.
PubMed Central
CAS
PubMed
Google Scholar
Zhang MQ, Marr TG: Fission yeast gene structure and recognition. Nucleic Acids Res. 1994, 22: 1750-1759.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maundrell K: Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993, 123: 127-130. 10.1016/0378-1119(93)90551-D.
Article
CAS
PubMed
Google Scholar
DeVeaux LC, Hoagland NA, Smith GR: Seventeen complementation groups of mutations decreasing meiotic recombination in Schizosaccharomyces pombe. Genetics. 1992, 130: 251-262.
PubMed Central
CAS
Google Scholar
Schuchert P, Kohli J: The ade6-M26 mutation of Schizosaccharomyces pombe increases the frequency of crossing over. Genetics. 1988, 119: 507-515.
PubMed Central
CAS
PubMed
Google Scholar
Grimm C, Bahler J, Kohli J: M26 recombinational hotspot and physical conversion tract analysis in the ade6 gene of Schizosaccharomyces pombe. Genetics. 1994, 136: 41-51.
PubMed Central
CAS
PubMed
Google Scholar
Munz P: An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics. 1994, 137: 701-707.
PubMed Central
CAS
PubMed
Google Scholar
Cooper JP, Watanabe Y, Nurse P: Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature. 1998, 392: 828-831. 10.1038/33947.
Article
CAS
PubMed
Google Scholar
Krawchuk MD, DeVeaux LC, Wahls WP: Meiotic chromosome dynamics dependent upon the rec8+, rec10+, and rec11+ genes of the fission yeast Schizosaccharomyces pombe. Genetics. 1999, 153: 57-68.
PubMed Central
CAS
PubMed
Google Scholar
Molnar M, Parisi S, Kakihara Y, Nojima H, Yamamoto A, Hiraoka Y, Bozsik A, Sipiczki M, Kohli J: Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics. 2001, 157: 519-532.
PubMed Central
CAS
PubMed
Google Scholar
Tanaka K, Hirata A: Ascospore development in the fission yeast Schizosaccharomyces pombe and S. japonicus. J Cell Sci. 1982, 56: 263-279.
CAS
PubMed
Google Scholar
Shimoda C, Hirata A, Kishida M, Hashida T, Tanaka K: Characterization of meiosis-deficient mutants by electron microscopy and mapping of four essential genes in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1985, 200: 252-257.
Article
CAS
PubMed
Google Scholar
Hirata A, Shimoda C: Structural modification of spindle pole bodies during meiosis II is essential for normal formation of ascospores in Schizosaccharomyces pombe: ultrastructural analysis of spo mutants. Yeast. 1994, 10: 173-183.
Article
CAS
PubMed
Google Scholar
Ponticelli AS, Smith GR: Meiotic recombination-deficient mutants of Schizosaccharomyces pombe. Genetics. 1989, 123: 45-54.
PubMed Central
CAS
PubMed
Google Scholar
Molnar M, Bahler J, Sipiczki M, Kohli J: The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics. 1995, 141: 61-73.
PubMed Central
CAS
PubMed
Google Scholar
Niwa O, Yanagida M: Triploid meiosis and aneuoploidy in Schizosaccharomyces pombe: an unstable aneuploid disomic for chromosome III. Curr Genet. 1985, 9: 463-470.
Article
Google Scholar
Watanabe Y, Nurse P: Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999, 400: 461-464. 10.1038/22774.
Article
CAS
PubMed
Google Scholar
Krawchuk MD, Wahls WP: Centromere mapping functions for aneuploid meiotic products: analysis of rec8, rec10, and rec11 mutants of the fission yeast Schizosaccharomyces pombe. Genetics. 1999, 153: 49-55.
PubMed Central
CAS
PubMed
Google Scholar
Fox ME, Smith GR: Control of meiotic recombination in Schizosaccharomyces pombe. Prog Nucleic Acid Res Mol Biol. 1998, 61: 345-378.
Article
CAS
PubMed
Google Scholar
Merino ST, Cummings WJ, Acharya SN, Zolan ME: Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc Natl Acad Sci USA. 2000, 97: 10477-10482. 10.1073/pnas.190346097.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klapholz S, Waddell CS, Esposito RE: The role of the SPO11 gene in meiotic recombination in yeast. Genetics. 1985, 110: 187-216.
PubMed Central
CAS
PubMed
Google Scholar
Diaz RL, Alcid AD, Berger JM, Keeney S: Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol. 2002, 22: 1106-1115. 10.1128/MCB.22.4.1106-1115.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nabeshima K, Kakihara Y, Hiraoka Y, Nojima H: A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination. EMBO J. 2001, 20: 3871-3881. 10.1093/emboj/20.14.3871.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolf KW: How meiotic cells deal with non-exchange chromosomes. Bioessays. 1994, 16: 107-114.
Article
CAS
PubMed
Google Scholar
Gutz H, Heslot H, Leupold U, Loprieno N: Schizosaccharomyces pombe. In: Handbook of Genetics. Edited by: King RC. 1974, Plenum Press, 395-446.
Google Scholar
Kohli J, Hottinger H, Munz P, Strauss A, Thuriaux P: Genetic mapping in Schizosaccharomyces pombe by mitotic and meiotic analysis and induced haploidization. Genetics. 1977, 87: 471-489.
PubMed Central
CAS
PubMed
Google Scholar
Wahls WP, Smith GR: A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hot spot activity. Genes Dev. 1994, 8: 1693-1702.
Article
CAS
PubMed
Google Scholar
Kon N, Schroeder SC, Krawchuk MD, Wahls WP: Regulation of the Mts1-Mts2-dependent ade6-M26 meiotic recombination hotspot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast. Mol Cell Biol. 1998, 18: 7575-7583.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kawasaki ES: Amplification of RNA. In: PCR protocols: a guide to methods and applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, Academic Press, Inc., 21-27.
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000, 302: 205-217. 10.1006/jmbi.2000.4042.
Article
CAS
PubMed
Google Scholar
Grimm C, Kohli J, Murray J, Maundrell K: Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet. 1988, 215: 81-86.
Article
CAS
PubMed
Google Scholar
Bähler J, Wu J-Q, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A, Philippsen P, Pringle JR: Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast. 1998, 14: 943-951. 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.3.CO;2-P.
Article
PubMed
Google Scholar
Francesconi S, Park H, Wang TS: Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype. Nucleic Acids Res. 1993, 21: 3821-3828.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kunkel TA, Roberts JD, Zakour RA: Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987, 154: 367-382.
Article
CAS
PubMed
Google Scholar
Kon N, Krawchuk MD, Warren BG, Smith GR, Wahls WP: Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in S. pombe. Proc Natl Acad Sci USA. 1997, 94: 13765-13770. 10.1073/pnas.94.25.13765.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haldane JBS: The combination of linkage values, and the calculation of distances between loci of linked factors. J Genet. 1919, 8: 299-309.
Article
Google Scholar