Open Access

MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes

  • John B Mailhes1Email author,
  • Colette Hilliard1,
  • Mary Lowery2 and
  • Steve N London1
Cell & Chromosome20021:2

https://doi.org/10.1186/1475-9268-1-2

Received: 19 August 2002

Accepted: 8 October 2002

Published: 8 October 2002

Abstract

Background

Although chromosome missegregation during oocyte maturation (OM) is a significant contributor to human morbidity and mortality, very little is known about the causes and mechanisms of aneuploidy. Several investigators have proposed that temporal perturbations during OM predispose oocytes to aberrant chromosome segregation. One approach for testing this proposal is to temporarily inhibit the activity of protein proteolysis during OM. We used the reversible proteasome inhibitor MG-132 to transiently perturb the temporal sequence of events during OM and subsequently analyzed mouse metaphase II (MII) for cytogenetic abnormalities. The transient inhibition of proteasome activity by MG-132 resulted in elevated levels of oocytes containing extra chromatids and chromosomes.

Results

The transient inhibition of proteasome-mediated proteolysis during OM by MG-132 resulted in dose-response delays during OM and elevated levels of aneuploid MII oocytes. Oocytes exposed in vitro to MG-132 exhibited greater delays during metaphase I (MI) as demonstrated by significantly (p < 0.01) higher levels of MI arrested oocytes and lower frequencies of premature sister chromatid separation in MII oocytes. Furthermore, the proportions of MII oocytes containing single chromatids and extra chromosomes significantly (p < 0.01) increased with MG-132 dosage.

Conclusions

These data suggest that the MG-132-induced transient delay of proteasomal activity during mouse OM in vitro predisposed oocytes to abnormal chromosome segregation. Although these findings support a relationship between disturbed proteasomal activity and chromosome segregation, considerable additional data are needed to further investigate the roles of proteasome-mediated proteolysis and other potential molecular mechanisms on chromosome segregation during OM.

Keywords

oocyte chromosome proteasome MG-132

Background

Although numerous hypotheses have been proposed to describe the etiology of aneuploidy in human gametes, the only steadfast association remains maternal age [1, 2]. Besides this association, very little information is available about the numerous potential mechanisms that may disrupt normal chromosome segregation in oocytes. Based on studies involving compounds that alter microtubular kinetics and induce both cell-cycle delay and aneuploidy, several groups have proposed that temporal perturbations during mammalian oocyte maturation (OM) predispose oocytes to aneuploidy [36]. In addition to faulty microtubule kinetics, perturbations during OM may also stem from abnormal function of centrosomes, kinetochores, spindle checkpoints proteins, the anaphase-promoting complex (APC), the securin-separin-cohesion complex proteins, and the proteasome [7].

OM encompasses the nuclear and cytoplasmic changes that occur during the transition from the dictyotene stage of meiosis I to metaphase II (MII). During this transition, tightly-regulated post-translational phosphorylation-dephosphorylation events and proteasome-mediated proteolytic reactions regulate the activation and inactivation of signal transduction pathways that control chromatin condensation, nuclear membrane dissolution, microtubule nucleation, and formation of a haploid oocyte [810]. Several kinases that exert major roles during OM include maturation promoting factor (MPF) [9, 11], mitogen-activated protein kinases (MAPKs) [12, 13], and the product of the c-mos protooncogene Mos kinase [14, 15]. Also, during OM oocytes undergo two highly-regulated metaphase-anaphase transitions (MAT) in which homologous chromosomes are equally and randomly segregated to an oocyte and first polar body and a subsequent division in which equational division of sister chromatids results in a haploid oocyte and a second polar body. The MATs are predicated upon the coordinated activities of the spindle checkpoint [16, 17], the anaphase-promoting complex (APC) or cyclosome [18, 19], the proteasome [20, 21], and the cohesion-complex proteins involved with chromosome cohesion and separation [2224]. Alterations in the temporal sequence of these coordinated activities may potentially predispose cells to faulty chromosome segregation.

Abnormal chromosome segregation has been observed in mice lacking the Mad2 checkpoint protein [25]. The spindle checkpoint utilizes sensory proteins that detect kinetochore-microtubule tension and occupancy and transiently block anaphase until all of the chromosomes are properly attached to microtubules [16, 26, 27]. Although the mammalian spindle checkpoint appears to differ between mitosis and meiosis, the two meiotic divisions, and male and female germ cells [28], anaphase subsequently follows stable kinetochore-microtubule attachments [17, 29] in both vertebrate mitotic [30] and meiotic [31] cells.

The APC is a large protein complex that ubiquinates mitotic cyclins and other regulatory proteins that are destined for timely proteolysis by proteasomes [10, 20]. Proteasomes are multicatalytic 26S proteases consisting of a 20S central core catalytic subunit bordered by two 19S components [32, 33] which hydrolyze C-terminal peptide bonds to acidic, basic, and hydrophobic amino-acid residues [20, 34]. Proteasomes proteolyze securins which inhibit separase activity. Separase is needed for inactivating cohesions and enabling sister chromatid separation [3537] in both fission yeast [38] and mammalian cells [39]. Although differences have been reported among species [40] and cell types [41], it appears that the majority of cohesion is removed from mammalian chromosomes during prophase and prometaphase; whereas, a lesser amount remains at kinetochores until anaphase onset. Proteasomes translocated to meiotic spindles of rat oocytes and MG-132 induced-inhibition of proteasomal activity resulted in partial segregation of chromosomes during meiosis I [42]. Moreover, defective proteasomal activity in fission yeast impaired chromosome segregation [38].

To test the hypothesis that transient inhibition of proteasomal activity during mouse meiosis I was associated with chromosome missegregation, mouse oocytes were exposed in vitro to the reversible proteasome inhibitor MG-132 and metaphase II (MII) oocytes were analyzed for structural and numerical chromosome aberrations. This transient arrest of proteasomal activity represents a perturbation during the normal temporal sequence of events during OM.

Results

Transient exposure of mouse oocytes to MG-132 for 6 h followed by washout of the compound and an additional 17 h culture in vitro enabled exposure of cells during meiosis I and sufficient time for them to progress to metaphase II. Although the majority of MII oocytes were classified as normal (Fig. 1A), the data indicated that MG-132 induced a dose-response perturbation or delay in the rate of OM and an increase of single, unpaired chromatids and hyperploidy in MII oocytes (Table I). The significant (P < 0.01) increase in the proportion of MI oocytes (Fig. 1B) in the 10.0 mcg/ml group relative to the other groups and the significant (P < 0.01) decrease of oocytes exhibiting premature centromere separation (PCS) (Fig. 1C) in the 10.0 mcg/ml group relative to the controls suggest that proteasomal inhibition retarded the rate of OM. An inverse relationship has been shown to exist between the proportions of arrested MI oocytes and MII oocytes exhibiting PCS [43]. The significant (P < 0.01) dose responses of higher frequencies of MII oocytes with single chromatids (Figs. 1C,1E) and of hyperploidy (Figs. 1D,1E) suggest that the MG-132-induced transient inhibition of proteasomal and calpain activities during meiosis I predisposed oocytes to abnormal chromosome segregation.

When oocytes were continuously exposed to 0.0, 0.5, 5.0, 25.0 or 50.0 μg/ml MG-132 from one h after initiating the culture until 17 h later, the proportions of MI arrested oocytes were 5.7% (5/87), 12.3% (14/114), 39.3% (44/112), 100% (98/98), and 100% (91/91), respectively. Of the MI oocytes in the 25.0 and 50.0 μg/ml MG-132 groups, 68.2% (30/44) and 100% exhibited diffuse chromatin (Fig. 1F); whereas, those oocytes continuously exposed to 0.0, 0.5 or 5.0 μg/mlMG-132 did not display diffuse chromatin. Additionally, the proportions of MI oocytes displaying homologue separation (Figs. 1G,1H) in oocytes transiently exposed to MG-132 for 6 h were 0% (0/13), 0% (0/19), 11.5% (3/26), 15.1% (8/53), respectively for 0.0, 5.0, 7.5, and 10.0 μg/mlMG-132. Oocytes with premature anaphase, polyploidy, or structural chromosome aberrations were not found.
Figure 1

Cytogenetic analysis of mouse oocytes following in vitro exposure to MG-132, chromosome configurations are shown. (A) metaphase II oocyte, normal, n = 20 dyads. (B) metaphase I oocyte, normal, N = 20 tetrads. (C) metaphase II oocyte, hypoploid, premature centromere separation (incomplete), n = 19 1/2 (10 dyads and 19 chromatids), arrow points to one of the 19 single, unpaired chromatids. (D) metaphase II oocyte, hyperploid, n= 22 dyads. (E) metaphase II oocyte, hyperploid, single-unpaired chromatid, n = 20 1/2 (20 dyads and one single, unpaired chromatid indicated by arrow). (F) metaphase I oocyte, diffuse chromatin, N= 20 probable tetrads. (G) metaphase I oocyte, homologue separation, N= 20 (17 tetrads and 6 dyads), arrow points to one of the 6 dyads. (H) metaphase I oocyte, homologue separation, N= 19 1/2 (16 tetrads and 7 dyads).

Table 1

Cytogenetic analysis of mouse metaphase II oocytes following in vitro exposure to the proteasome inhibitor MG-132

MG-132 (mcg/ml)

No. cells analyzed

No. MI oocytes (%)

No. MII oocytes (%)

No. premature centromere separation (%)

No. single chromatids (%)

No. haploid (%)

No. hypoploid (%)

No. hyperploid (%)

Control

130

13 (10.0)a

117 (90.0)

43 (36.8)a

1 (0.9)a

101 (86.3)

16 (13.7)

-0-a

5.0

158

19 (12.0)a

139 (88.0)

38 (27.3)

3 (2.2)a,b

121 (87.1)

18 (12.9)

-0-a

7.5

191

26 (13.6)a

165 (86.4)

44 (26.7)

11 (6.7)b

142 (86.1)

18 (10.9)

5 (3.0)b

10.0

125

53 (42.4)b

72 (57.6)

13 (18.1)b

11 (15.3)c

62 (86.1)

3 (4.2)

7 (9.7)c

Different superscripts among proportions in the same column indicate significant (P < 0.01) differences.

Discussion

Proteasome activity is required for germinal vesicle breakdown (GVBD) in starfish and toad oocytes [44, 45] and for activating Xenopus oocytes [45, 46]. Also, proteasomes are needed for regulating centrosome segregation [38, 47], kinetochore structure [39], and sister chromatid cohesion and separation [48]. When rat oocytes were exposed to the proteasome inhibitor MG132, proteasomes translocated to the meiotic spindle, MPF activity was sustained, and oocytes were arrested in MI with partially segregated chromosomes [42].

Besides inhibiting proteasome activity, the peptide aldehyde proteasome inhibitors have been also reported to repress certain lysosomal cysteine proteases and calpains [49]. The finding that MG-132 can obstruct the casein degrading activity of the calcium-dependent protease calpain [50] appears relevant to oocyte maturation. Calpain activity is needed for proteolysis of the c-mos proto-oncogene product pp39 mos in Xenopus oocytes [51], certain cytoskeletal proteins (alpha-tubulin, actin, dynamin, lamin B) in starfish oocytes [52], and of cyclin in Xenopus egg extracts [53].

We report that exposure of mouse oocytes to 10.0 mcg/ml MG-132 during meiosis I led to significant (P < 0.01) increases in the proportions of MI arrested oocytes and of MII oocytes with SC and hyperploidy. Coupled with these findings was a significant (P < 0.01) decrease in the incidence of MII oocytes exhibiting PCS (Table 1). Chemical induction of MI arrest in mammalian oocytes and spermatocytes indicates cell cycle retardation which is often associated with aneuploidy [43, 54]. Although 10.0 mcg/ml MG-132 increased the frequency of MI arrested oocytes, this cell-cycle retardation may not be entirely attributed to proteasome inhibition. MG-132 can also inhibit calpains [50] which are needed for cell cycle progression [52] and cyclin degradation [53]. Previous studies [5, 55] have shown that an inverse relationship usually exists between the proportions of arrested MI oocytes and MII oocytes exhibiting PCS. Oocytes residing in MII for longer periods of time tend to display higher frequencies of PCS; whereas, those deferred in MI spend less time in MII prior to fixation. The significant (P < 0.01) increase in the proportions of MII oocytes exhibiting PCS in controls relative to the 10.0 μg/ml group reflects the greater length of time that control oocytes spent in MII prior to fixation. We suggest that the PCS detected in MII oocytes mainly resulted from in vitro aging. As such, the frequencies of PCS noted in Table 1 would represent independent events relative to the other cytogenetic abnormalities reported.

On the other hand, PCS during meiosis I can result in aneuploid MII oocytes. PCS of homologous chromosomes and sister chromatids prior to establishing proper kinetochore-spindle attachment during meiosis I increases the probabilities of both homologues going to the same pole and of equational division of sister chromatids during anaphase I. Upon normal fertilization, MII oocytes with an additional chromosome result in trisomic zygotes; whereas oocytes containing an extra chromatid would be expected to produce 50% trisomic zygotes due to random segregation during anaphase II. This situation also applies to oocytes missing chromosomes and chromatids. Experimental data support PCS as a prelude to aneuploidy. PCS of homologues during meiosis I and equational division of sister chromatids during anaphase I [56, 57] and premature separation of chromatids during meiosis II [58, 59] and mitosis [60, 61] have been shown to increase the incidence of aneuploidy in subsequent divisions. The partially segregated chromosomes found in rat oocytes exposed to MG-132 may have represented homologous chromosomes and/or sister chromatids [42].

The origin of single, unpaired chromatids in MII oocytes has been proposed to result from premature separation of sister chromatids prior to anaphase I [56, 57]. The possibility exists that both SC and aneuploidy may have originated from PCS of homologues and sister chromatids during the MAT of meiosis I. Upon removal of MG-132 from the culture media during meiosis I and the subsequent resumption of OM and proteasomal activity, faulty kinetochore-microtubule attachment accompanied by degradation of cohesion proteins could conceivably lead to PCS of homologues and sister chromatids. Following anaphase I, a probability exists that both homologues and sister chromatids could randomly assort to the same pole and result in SC and aneuploid MII oocytes.

Although the frequency of homologue separation increased with MG-132 dose, the sample size of 11 oocytes is much too low to comment about their possible origin or their influence on other abnormalities detected in MII oocytes. The possibility exists that the observed homologue separation may actually reflect anaphase onset. The finding of diffuse chromatin in MI oocytes continuously exposed to 25.0 and 50.0 μg/mlMG-132 may be related to the sustained elevation of MPF activity noted in rat oocytes exposed to MG-132 [42] and the stabilization of polyubiquitinated proteins and enhanced deubiquitination of nucleosomal histones in chromatin following proteasomal inhibition [62].

Conclusions

The findings of the present study indicate that transient in vitro exposure of mouse oocytes to MG-132 is associated with abnormal chromosome segregation. However, additional data are clearly needed to further investigate the roles of calpain proteolysis and proteasome-mediated proteolysis on chromosome segregation as well as the numerous other potential molecular mechanisms of aneuploidy.

Methods

Animals

Female, ICR (Harlan Sprague-Dawley, Indianapolis, IN) mice between 26–33 g (8–12 wks of age) were used in all experiments. They were housed under ambient temperature of 21–23°C, relative humidity of 50 ± 5%, and a 12-h light/12-h dark photoperiod. Feed and water were provided ad libitum. This research was approved by the Louisiana State University Health Sciences Center Animal Resources Advisory Committee.

Oocyte collection, culture and exposure to MG-132

For each replicate experiment, five similarly treated mice received an intraperitoneal injection of 7.5 IU pregnant mare serum gonadotrophin (Dr. A.F. Parlow, National Hormone & Peptide Program, Torrance, CA) to augment the number of maturing follicles. Forty-six h later, the mice were euthanized by CO2 inhalation and their reproductive tracts placed into Waymouth culture medium (Gibco, Grand Island, New York, No. 11220-035). The ovaries were isolated and cumulus-oocyte complexes (COC) were liberated from antral follicles. The COC were then transferred to a 35 × 15 mm culture dish (Falcon No. 1008; Becton Dickinson, Co., Lincoln Park, NJ) containing 3 ml of complete culture medium (Waymouth medium, 942.7 ml, [Gibco No. 11220-035]; fetal bovine serum, 50 ml, [Gibco No. 16000-036]; penicillin-streptomycin [10,000 U/ml each of penicillin G sodium and streptomycin sulphate, 5 ml, [Gibco No. 15140-122]; pyruvic acid, 2.3 ml [Gibco No. 11360-070]; and 1 μg/ml FSH [NHPP, lot AFP-7028D]) and incubated at 37°C in a 5% CO2 gaseous atmosphere. A stock solution of 150 μg/ml MG-132 (Z-leu-leu-CHO; Calbiochem, La Jolla, CA; No. 474790) was prepared in Waymouth medium containing 7.5 μL per ml. dimethylsulfoxide (DMSO) as the solvent.

MG-132 is a peptide aldehyde that inhibits ubiquitin-mediated proteolysis by binding to and inactivating 20S and 26S proteasomes [49, 62]. Although 1–10 μM MG-132 inhibited first polar body extrusion in rat oocytes, its activity is reversible [42]. We conducted preliminary experiments to obtain a MG-132 dose range that would transiently perturb or inhibit OM during meiosis I while enabling oocytes to complete OM following washing out of the compound. Data from oocytes cultured in either 0.0, 0.5, 5.0, 25.0, or 50.0 μg/ml MG-132 from one h after initiating the culture until 17 h later showed that the two higher doses completely blocked oocytes in MI. On the other hand, when oocytes were exposed to these same MG-132 doses from one h after initiating the culture until 6 h later when the chemical was washed out (4X) and cultured for an additional 17 h in media without MG-132, oocytes exposed to 25.0 and 50.0 μg/ml MG-132 were still arrested in MI. Thus, data from these preliminary experiments enabled the selection of a protocol in which oocytes were placed into complete culture media and incubated for 1 h prior to adding either 0 (solvent only), 5.0, 7.5, or 10.0 μg/ml MG-132. Six h later, the MG-132 was washed out of the media by rinsing the oocytes four times in complete media without MG-132 and then re-incubated for 17 h. Under this protocol, oocytes were exposed to MG-132 during meiosis I and the subsequent 17 h culture time provided sufficient time for the oocytes to overcome the MG-132-induced meiotic block and progress to MII. Control oocytes were cultured in 7.5 μl DMSO per ml complete media and processed in the same manner as those exposed to MG-132.

Cytogenetic analysis and statistical analysis of data

Oocytes were collected and processed according to a mass-harvest procedure [63] and chromosomes were C-banded [64] to distinguish between complete dyads (MII chromosomes) and disjoined dyads (single chromatids). In each cell analyzed, the number of chromosomes and/or chromatids was counted at 1000 × magnification to provide data for calculating aneuploidy. The number of hypoploid (n = 10–19 1/2), haploid (n = 20), hyperploid (n = 20 1/2–29 1/2), and polyploid (n = 30–40) MII oocytes were recorded. An oocyte classified as 20 1/2 contains 20 dyads and one chromatid or one-half dyad. The frequencies of each ploidy class were divided by the total number of MII oocytes analyzed excluding polyploidy. The frequencies of MII oocytes displaying premature centromere separation (PCS), single chromatids (SC), premature anaphase (PA) were also calculated relative to the total number of MII oocytes analyzed. Since MI and polyploid oocytes are distinct categories and are disregarded when computing aneuploidy, their frequencies were calculated relative to the total number of oocytes analyzed.

The criteria for eliminating a cell from analysis included: inadequate C-banding for discriminating between intact dyads and those separated at the centromere, overlapped or clumped chromosomes, or excessive chromosome scatter that precluded an objective analysis of numerical or structural aberrations. The frequencies of hyperploid cells were used as a measure of aneuploidy because an unknown proportion of the hypoploid cells is influenced by technical artifact resulting from excessive chromosome scatter during slide preparation. Chi-Square analysis and the Fisher's Exact Test were used for data analyses.

Author's contributions

Each author contributed substantially to the various aspects required for the timely completion of this study. Their respective efforts are reflected by the order of authorship.

Declarations

Authors’ Affiliations

(1)
Department of Obstetrics and Gynecology Louisiana State University Health Sciences Center
(2)
Department of Pathology, Louisiana State University Health Sciences Center

References

  1. EB Hook: Maternal age, paternal age, and human chromosome abnormality: nature, magnitude, etiology, and mechanisms of effects. In: Aneuploidy: Etiology and Mechanisms. Edited by: Dellarco VL, Voytek PE, Hollaender A. 1985, New York, Plenum Press, 117-132.Google Scholar
  2. Hassold T, Sherman S: The origin of non-disjunction in humans. In: Chromosomes Today. Edited by: Summer A, Chandley AC. 1993, London, Chapman and Hall, 11: 313-322.View ArticleGoogle Scholar
  3. Hansmann I, Pabst B: Nondisjunction by failures in the molecular control of oocyte maturation. Ann Anat. 1992, 174: 485-490.View ArticlePubMedGoogle Scholar
  4. Eichenlaub-Ritter U: Studies on maternal age-related aneuploidy in mammalian oocytes and cell cycle control. In: Chromosomes Today. Edited by: Sumner AT, Chandley AC. 1993, London, Chapman & Hall, 11: 323-336.View ArticleGoogle Scholar
  5. Mailhes JB, Marchetti F: The influence of postovulatory ageing on the retardation of mouse oocyte maturation and chromosome segregation induced by vinblastine. Mutagenesis. 1994, 9: 541-545.View ArticlePubMedGoogle Scholar
  6. Plachot M: The human oocyte. Genetic aspects. Ann. Genet. 1997, 40: 115-120.PubMedGoogle Scholar
  7. Nasymth K: Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet. 2001, 35: 673-745. 10.1146/annurev.genet.35.102401.091334.View ArticleGoogle Scholar
  8. Bornslaeger EA, Mattei P, Schultz RM: Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol. 1986, 114: 453-462.View ArticlePubMedGoogle Scholar
  9. Dekel N: Protein phosphorylation-dephosphorylation in the meiotic cell cycle of mammalian oocytes. Rev Reprod. 1996, 1: 82-88.View ArticlePubMedGoogle Scholar
  10. Kotani S, Tanaka H, Yasuda H, Todokoro K: Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol. 1999, 146: 791-800. 10.1083/jcb.146.4.791.PubMed CentralView ArticlePubMedGoogle Scholar
  11. Downs SM, Daniel SAJ, Bornslaeger EA, Hoppe PC, Eppig JJ: Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Res. 1989, 23: 323-334.View ArticlePubMedGoogle Scholar
  12. Moos J, Visconti PW, Moore GD, Schultz RM, Kopf GS: Potential role of mitogen-activated protein kinase (MAP) in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod. 1995, 53: 692-699.View ArticlePubMedGoogle Scholar
  13. Murray AW: MAP kinases in meiosis. Cell. 1998, 92: 157-159.View ArticlePubMedGoogle Scholar
  14. Paules RS, Buccione R, Moschel RC, Vande Woude GF, Eppig JJ: Mouse mos protooncogene product is present and functions during oogenesis. Proc Natl Acad Sci. 1989, 86: 5395-5399.PubMed CentralView ArticlePubMedGoogle Scholar
  15. Hashimoto N: Role of c-mos proto-oncogene product in the regulation of mouse oocyte maturation. Horm Res. 1996, 46: 11-14.View ArticlePubMedGoogle Scholar
  16. Amon A: The spindle checkpoint. Curr Opin Genet Develop. 1999, 9: 69-75. 10.1016/S0959-437X(99)80010-0.View ArticleGoogle Scholar
  17. Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED: Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol. 2000, 150: 1233-1250. 10.1083/jcb.150.6.1233.PubMed CentralView ArticlePubMedGoogle Scholar
  18. Page AM, Hieter P: The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem. 1999, 68: 583-609. 10.1146/annurev.biochem.68.1.583.View ArticlePubMedGoogle Scholar
  19. Nasmyth K, Peters JM, Uhlmann F: Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 2000, 288: 1379-1385. 10.1126/science.288.5470.1379.View ArticlePubMedGoogle Scholar
  20. Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82: 373-428.View ArticlePubMedGoogle Scholar
  21. Jesenberger V, Jentsch S: Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol. 2002, 3: 112-121. 10.1038/nrm731.View ArticlePubMedGoogle Scholar
  22. Hagting A, den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J: Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol. 2002, 157: 1125-1137. 10.1083/jcb.200111001.PubMed CentralView ArticlePubMedGoogle Scholar
  23. Hauf S, Waizenegger IC, Peters JM: Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001, 293: 1320-1323. 10.1126/science.1061376.View ArticlePubMedGoogle Scholar
  24. Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW: Dual inhibition of sister chromatid separation at metaphase. Cell. 2001, 107: 715-726.View ArticlePubMedGoogle Scholar
  25. Dobles M, Liberal V, Scott ML, Benerza R, Sorger PK: Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell. 2000, 101: 635-645.View ArticlePubMedGoogle Scholar
  26. Dorée M, Le Peuch C, Morin N: Onset of chromosome segregation at the metaphase to anaphase transition of the cell cycle. Prog Cell Cycle Res. 1995, 1: 309-318.View ArticlePubMedGoogle Scholar
  27. Skibbens RV, Hieter P: Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet. 1998, 32: 307-337. 10.1146/annurev.genet.32.1.307.View ArticlePubMedGoogle Scholar
  28. Kallio M, Eriksson JE, Gorbsky GJ: Differences in spindle association of the mitotic checkpoint protein Mad2 in mammalian spermatogenesis and oogenesis. Dev Biol. 2000, 225: 112-123. 10.1006/dbio.2000.9818.View ArticlePubMedGoogle Scholar
  29. Sudakin V, Chan GK, Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001, 154: 925-936. 10.1083/jcb.200102093.PubMed CentralView ArticlePubMedGoogle Scholar
  30. Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleaveland DW, Labbe J-C: Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell. 2001, 106: 83-93.View ArticlePubMedGoogle Scholar
  31. Shah JV, Cleveland DW: Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell. 2000, 103: 997-1000.View ArticlePubMedGoogle Scholar
  32. Coux O, Tanaka K, Goldberg AL: Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996, 65: 801-847. 10.1146/annurev.biochem.65.1.801.View ArticlePubMedGoogle Scholar
  33. Goldberg AL: Functions of the proteasome: the lysis at the end of the tunnel. Science. 1995, 268: 522-523.View ArticlePubMedGoogle Scholar
  34. Elliott PJ, Ross JS: The proteasome: a new target for novel drug therapies. Am J Clin Pathol. 2001, 116: 637-646.View ArticlePubMedGoogle Scholar
  35. Jallepalli PV, Waizenegger I, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B, Lengauer C: Securin is required for chromosomal stability in human cells. Cell. 2001, 105: 445-457. 10.1016/S0092-8674(01)00340-3.View ArticlePubMedGoogle Scholar
  36. Uhlman F: Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO reports. 2001, 2: 487-492.View ArticleGoogle Scholar
  37. Uhlmann F, Lottspeich F, Nasmyth K: Sister chromatid separation at anaphase onset is promoted by cleavage of the cohesion subunit Scc1p. Nature. 1999, 400: 37-42. 10.1038/21831.View ArticlePubMedGoogle Scholar
  38. Javerzat JP, McGurk G, Cranston G, Barreau C, Bernard P, Gordon C, Allshire R: Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol. 1999, 19: 5155-5165.PubMed CentralView ArticlePubMedGoogle Scholar
  39. Paweletz N, Wojcik C, Schroeter D, Finze EM: Are proteasomes involved in the formation of the kinetochore?. Chromosome Res. 1996, 4: 436-442.View ArticlePubMedGoogle Scholar
  40. Darwiche N, Freeman LA, Strunnikov A: Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene. 1999, 233: 39-47. 10.1016/S0378-1119(99)00160-2.PubMed CentralView ArticlePubMedGoogle Scholar
  41. Van Heemst D, Heyting C: Sister chromatid cohesion and recombination in meiosis. Chromosoma. 2000, 109: 10-26. 10.1007/s004120050408.View ArticlePubMedGoogle Scholar
  42. Josefsberg LBY, Galiani D, Dantes A, Amsterdam A, Dekel N: The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol Reprod. 2000, 62: 1270-1277.View ArticlePubMedGoogle Scholar
  43. Mailhes JB, Marchetti F: The relationship between chemically-induced meiotic delay and aneuploidy in mouse oocytes and zygotes. In: Chromosome Segregation and Aneuploidy. Edited by: Vig BK. 1993, Berlin, NATO ASI Series, Springer-Verlag, H72: 283-296.View ArticleGoogle Scholar
  44. Takahashi M, Tokumoto T, Ishikawa K: DFP-sensitive multicatalytic protease complexes (proteasomes) involved in the control of oocyte maturation in the toad, Bufo japonicus. Mol Reprod Dev. 1994, 38: 310-317.View ArticlePubMedGoogle Scholar
  45. Sawada M, Kyozuka K, Morinaga C, Izumi K, Sawada H: The proteasome is an essential mediator of the activation of pre-MPF during starfish oocyte maturation. Biochem Biophys Res Commun. 1997, 236: 40-43. 10.1006/bbrc.1997.6900.View ArticlePubMedGoogle Scholar
  46. Tokumoto T, Yamashita M, Tokumoto M, Katsu Y, Horiguchi R, Kajiura H, Nagahama Y: Inhibition of cyclin B degradation by the 26S proteasome upon egg activation. J Cell Biol. 1997, 138: 1313-1322. 10.1083/jcb.138.6.1313.PubMed CentralView ArticlePubMedGoogle Scholar
  47. Ochi T: Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid. Mutat Res. 2002, 499: 73-84. 10.1016/S0027-5107(01)00266-4.View ArticlePubMedGoogle Scholar
  48. Zou H, McGarryJ TJ, Bernal T, Kirschner MW: Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999, 285: 418-422. 10.1126/science.285.5426.418.View ArticlePubMedGoogle Scholar
  49. Lee DH, Goldberg AL: Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Bio. 1998, 8: 397-403. 10.1016/S0962-8924(98)01346-4.View ArticleGoogle Scholar
  50. Tsubuki S, Saito Y, Tomioka M, Ito H, Kawashima S: Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996, 119: 572-576.View ArticlePubMedGoogle Scholar
  51. Watanabe N, Vande Woude G, Ikawa Y, Sagata N: Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature. 1989, 342: 505-511. 10.1038/342505a0.View ArticlePubMedGoogle Scholar
  52. Santella L, Kyozuka K, Hoving S, Munchbach M, Quadroni M, Dainese P, Zamparelli C, James P, Carafoli E: Breakdown of cytoskeletal proteins during meiosis of starfish oocytes and proteolysis induced by calpain. Exp Cell Res. 2000, 259: 117-126. 10.1006/excr.2000.4969.View ArticlePubMedGoogle Scholar
  53. Lorca T, Galas S, Fesquet D, Devault A, Cavadore JC, Doree M: Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca(2+)-calmodulin dependent event. EMBO J. 1991, 10: 2087-2093.PubMed CentralPubMedGoogle Scholar
  54. Adler I-D, Gassner P, Schriever-Schwemmer G, Min ZR: Correlation between induction of meiotic delay and aneuploidy in male mouse germ cells. In: Chromosome Segregation and Aneuploidy. Edited by: Vig B K. 1993, Berlin, NATO ASI Series, Springer-Verlag, H72: 297-308.View ArticleGoogle Scholar
  55. Mailhes JB: Important biological variables that can influence the degree of chemical-induced aneuploidy in mammalian oocyte and zygotes. Mutat Res. 1995, 339: 155-176.View ArticlePubMedGoogle Scholar
  56. Angell RR: Predivision in human oocytes a meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991, 86: 383-387.View ArticlePubMedGoogle Scholar
  57. Soewarto D, Schimiady H, Eichenlaub-Ritter U: Consequences of non-extrusion of the first polar body and control of the sequential segregation of homologues and chromatids in mammalian oocytes. Hum Reprod. 1995, 10: 2350-2360.View ArticlePubMedGoogle Scholar
  58. Mailhes JB, Young D, London SN: 1,2-Propanediol-induced premature centromere separation in mouse oocytes and aneuploidy in one-cell zygotes. Biol Reprod. 1997, 57: 92-98.View ArticlePubMedGoogle Scholar
  59. Mailhes JB, Young D, London SN: Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. Biol Reprod. 1998, 58: 1206-1210.View ArticlePubMedGoogle Scholar
  60. Fitzgerald PH, Pickering AF, Mercer JM, Miethke PM: Premature centromere division: A mechanism of non-disjunction causing X chromosome aneuploidy in somatic cells of man. Ann Hum Genet. 1975, 38: 417-428.View ArticlePubMedGoogle Scholar
  61. Gabarron J, Jimenez A, Glover G: Premature centromere division dominantly inherited in a subfertile family. Cytogenet Cell Genet. 1986, 43: 69-71.View ArticlePubMedGoogle Scholar
  62. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994, 78: 767-771.View ArticleGoogle Scholar
  63. Mailhes JB, Yuan ZP: Cytogenetic technique for mouse metaphase II oocytes. Gamete Res. 1987, 18: 77-83.View ArticlePubMedGoogle Scholar
  64. Salamanca F, Armendares S: C-bands in human metaphase chromosomes treated by barium hydroxide. Ann Genet. 1974, 17: 135-136.PubMedGoogle Scholar

Copyright

© Mailhes et al; licensee BioMed Central Ltd. 2002

This article is published under license to BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.